1.1 0p from connections
Rita de olika signalerna nedan, där x(t) är definierad enligt figuren. Bild: triangel-puls med bas från t=-4 till t=2, topp vid t=-4? (se bild) a) y_a(t) = x(t - 4) b) y_b(t) = x(t…
Show full question
Rita de olika signalerna nedan, där x(t) är definierad enligt figuren.
Bild: triangel-puls med bas från t=-4 till t=2, topp vid t=-4? (se bild)
a) y_a(t) = x(t - 4)
b) y_b(t) = x(t / 1,5)
c) y_c(t) = x(-t)
d) y_d(t) = x(2t - 4)
e) y_e(t) = x(2 - t)
Solution (notes)
a) [Figure: y_a(t) piecewise triangular signal: at t=0 value ~4, decreasing linearly to 0 at t≈4, then small triangular peak around t≈6]
b) [Figure: y_b(t) triangular shape starting at t≈-6 rising then decreasing to 0 at t=0 then small triangle rising to t≈3]
c) [Figure: y_c(t) piecewise: small left triangle between t≈-2 and 0, then linearly increasing to value ~4 at t≈4]
d) Tidsskalaning och tidsförskjutning, i valfri ordning:
Tidsskalaning först ⇒ Låt x1(t) = x(2t);
⇒ y_d(t) = x(2t − 4) = x(2(t − 2)) = x1(t − 2);
[Figur visar x1(t) och därefter y_d(t)]
Om tidsförskjutning först ⇒ Låt x2(t) = x(t − 4);
⇒ y_d(t) = x(2t − 4) = x2(2t)
[Figur visar x2(t) och y_d(t)]
e) Spegling och tidsförskjutning, i valfri ordning:
Spegling först ⇒ Låt x3(t) = x(−t);
⇒ y_e(t) = x(2 − t) = x(−(t − 2)) = x3(t − 2);
[Figur visar x3(t) och y_e(t)]
Om tidsförskjutning först ⇒ Låt x4(t) = x(t + 2);
⇒ y_e(t) = x(2 − t) = x(−t + 2) = x4(−t);
[Figur visar x4(t) och y_e(t)]
Connections (4) est. points: 0
exam_3 - assignment 3 b
3 p
Snippet: exam_3 Q3b: input x(t)=e^{2t} u_0(2 − t) (i.e. a time-reversed/shifted step window) is convolved with h(t)=δ(t)+2 e^{−3t} u(t). Rewriting u_0(2−t) as a shifted and reversed step and handling the resulting integration limits is exactly the kind of operation (reflection + shift, and their order) treated in lesson 1.1(e). Knowing the lesson gives the correct way to express x(t) in shifted/reflected form and thus yields the main part of the piecewise convolution — worth a significant fraction of the 5-point subproblem (estimated 3 points).
exam_5 - assignment 2 b
3 p
Snippet: exam_5 Q2b: compute h(t)=h_A(t) * h_B(t) where h_B(t)=u(t−1) − u(t−4) (a shifted rectangular window). The convolution requires shifting h_A and integrating over the shifted interval [1,4] (or appropriate piecewise limits). Lesson 1.1 (time-shift and order of operations) directly provides the method to express shifted signals and set integration limits, which supplies most of the work for this 5-point convolution part (estimated 3 points).
exam_2 - assignment 4
2 p
Snippet: exam_2 Q4: x(t)=Δ(t/2) is sampled and then passed to a discrete LTI system. The time-scaling x(t)=Δ(t/2) changes the signal's duration and thus scales its spectrum; lesson 1.1(d) on time-scaling (and how scaling interacts with subsequent shifts/operations) is directly useful to sketch X(Ω) before/after sampling. This helps sketching the amplitude spectra portions of the 8-point question (estimated contribution ~2 points).
exam_4 - assignment 4
–
Snippet: exam_4 Q4: h[n]=δ[n]+(1/3)^n u[n−1] and x[n]=u[n+3]−u[n−3]; compute y[n] via convolution. The problem relies on shifting discrete steps and signals (u[n±k]) and understanding how shifts affect convolution limits. Lesson 1.1 teaches continuous-time shifting, scaling and reflection; the same concepts (shift/reverse and order) are the direct prerequisites here. This is a useful prerequisite but not by itself sufficient to produce the full answer, so no direct point allocation is given.