10.1 0p from connections
Beräkna Fouriertransformen X[Ω] enligt grunddefinitionen X[Ω] = Σ_{n=-∞}^{∞} x[n] e^{-jΩn} för signalerna nedan, där |r|<1. a) x[n] = δ[n] b) x[n] = δ[n-k] c) x[n] = r^{n} · u[…
Show full question
Beräkna Fouriertransformen X[Ω] enligt grunddefinitionen
X[Ω] = Σ_{n=-∞}^{∞} x[n] e^{-jΩn} för signalerna nedan, där |r|<1.
a) x[n] = δ[n]
b) x[n] = δ[n-k]
c) x[n] = r^{n} · u[n-1]
d) x[n] = r^{n} · u[n+1]
Solution (notes)
Beräkna X[Ω] = Σ_{n=-∞}^{∞} x[n] e^{-jΩn}
a) x[n] = δ[n]
=> X[Ω] = Σ δ[n] e^{-jΩn} = e^{-jΩ·0} = 1
b) x[n] = δ[n-k]
=> X[Ω] = Σ δ[n-k] e^{-jΩn} = e^{-jΩk} (enhetsimpulsen finns vid n=k)
c) x[n] = r^{n} u[n-1]
=> X[Ω] = Σ_{n=1}^{∞} r^{n} e^{-jΩn} = Σ_{n=1}^{∞} (r e^{-jΩ})^{n} = (r e^{-jΩ}) / (1 - r e^{-jΩ}) (|r|<1 för konvergens)
d) x[n] = r^{-n} u[n+1]
=> X[Ω] = Σ_{n=-1}^{∞} r^{-n} e^{-jΩn} = Σ_{n=-1}^{∞} (r^{-1} e^{-jΩ})^{n} = e^{jΩ·2} / (r (e^{jΩ} - r)) (framställning enligt räknandet i bilden)
Connections (5) est. points: 0
exam_1 - assignment 4
4 p
Snippet (question + solution):
- Question b) "Skissera systemets amplitudkaraktäristik |H(Ω)|" for a discrete-time impulse response h[n] shown as h[n] = (1/3)(δ[n] + δ[n−1] + δ[n−2]).
- Solution: H(e^{jΩ}) = (1/3)(1 + e^{-jΩ} + e^{-j2Ω}).
Why connected: The lesson shows exactly how to compute X[Ω]=Σ x[n] e^{-jΩn} for δ[n] and shifted δ[n−k], and how sums of such terms yield expressions with e^{-jΩk}. Knowing the lesson lets you write H(e^{jΩ}) immediately and is directly what part b) requires (worth 4 points on the exam).
exam_4 - assignment 4
5 p
Snippet (question + solution):
- Question: "Ett tidsdiskret energifritt LTI-system har impulssvaret h[n] = δ[n] + (1/3)^n · u[n−1]. a) Bestäm systemets kausalitet och stabilitet. b) Beräkna y[n] för x[n] = u[n+3] − u[n−3]."
- Solution uses summability of (1/3)^n u[n−1] and convolution to get y[n].
Why connected: The lesson gives the DTFT/DT-sum for δ[n] and for r^n u[n−1] (case c) with r=1/3). That directly provides H[Ω] (and insight on convergence/stability) and simplifies convolution/transform-domain approaches used in part b). This covers significant parts of the exam task (causality/stability check and transform-based steps), so a substantial fraction of the points (estimated 5) is attributable to the lesson material.
exam_6 - assignment 4
4 p
Snippet (question + solution):
- Question: cascade of H1 with H1[Ω]=1/(e^{jΩ}−0.5) and H2 given by y[n]−0.8 y[n−1]=x[n−1]; asked to compute total impulse response h[n].
- Solution: h1[n]=0.5^{n−1} u[n−1], h2[n]=0.8^{n−1} u[n−1], then h[n]=(h1*h2)[n] computed (geometric sequences convolved and summed).
Why connected: Lesson case c) gives the transform and closed-form sums for sequences r^n u[n−1]; recognizing those sequences and using geometric-sum formulas is exactly what is used to derive h1[n], h2[n] and to perform the convolution. This directly supplies core steps needed in both time- and transform-domain solutions.
exam_5 - assignment 4
3 p
Snippet (question + solution):
- Question: "...insignalen x[n] = (0.5^n + 1) u[n] gives utsignal y[n] = 2 δ[n] − 1.5 δ[n−1]. a) Rita pol-nollstallediagrammet för H(z) ... e) Beräkna systemets impulssvar h[n]."
- Solution: uses Z-transforms of 0.5^n u[n] and δ[n] to compute H(z) and h[n].
Why connected: The lesson provides the basic DT-sum for geometric sequences (r^n u[·]) and for δ/shifted δ; these transform pairs let you form X[z] and Y[z] and solve for H(z) and h[n]. The lesson supplies important building blocks for several subparts (pol/zero placement and transform algebra).
exam_2 - assignment 4
2 p
Snippet (question + solution):
- Question: uniform sampling of x(t)=Δ(t/2) with f_s=2 Hz producing x[n], then x[n] passed through discrete-time h[n]= (1/2) sinc_N(n/2); asked to "Rita utsignalens amplitudspektrum |Y(Ω)|". Solution: X[Ω] = 1 + cos(Ω) (from x[n] = 1/2 δ[n+1] + δ[n] + 1/2 δ[n−1]) and Y[Ω]=X[Ω]H[Ω].
Why connected: The lesson's items a) and b) (δ[n] and δ[n−k] → e^{-jΩk}) directly give the DTFT of finite sums of shifted deltas used to form X[Ω]. That immediate ability to write X[Ω] is a small but necessary step in the exam solution (hence modest points).