6.1 0p from connections
Två kausala LTI-system med insignaler x(t) och utsignal y(t) beskrivs av de två differentialekvationerna nedan. a) d^2 y(t)/dt^2 + 3 dy(t)/dt + 2 y(t) = dx(t)/dt Beräkna systemet…
Show full question
Två kausala LTI-system med insignaler x(t) och utsignal y(t) beskrivs av de två differentialekvationerna nedan.
a) d^2 y(t)/dt^2 + 3 dy(t)/dt + 2 y(t) = dx(t)/dt
Beräkna systemets steg svar g(t).
b) d^2 y(t)/dt^2 + 4 dy(t)/dt + 4 y(t) = dx(t)/dt + x(t)
y(0^-) = 2, y'(0^-) = 1
Beräkna, för insignalen x(t) = e^{t} u(t), systemets totala utsignal y(t) = y_h(t) + y_ps(t) samt ange vilken del av utsignalen som är y_h(t) respektive y_ps(t).
Solution (notes)
g(t) = (u * h)(t) = L^{-1}{G(s)}, där G(s) = U(s)·H(s). Då U(s) = 1/s och H(s) = Y_{2s}(s)/X(s). Laplacetransformera differentialekvationens vänsterled och högerled. Den dubbelsidiga Laplacetransformen går alltid bra, men här är det även ok med den enkelsidiga eftersom LTI-systemet är kausalt samt att vi ändå betraktar ett energifritt system när H(s) ska beräknas.
L_I{ d^2y(t)/dt^2 + 3 dy(t)/dt + 2 y(t) } = L_I{ d x(t)/dt }.
Formelsamlingens Tab.4:10 ⇒ (s^2 + 3s + 2) Y_{2s}(s) = s·X(s). ⇒ H(s) = Y_{2s}(s)/X(s) = s/(s^2 + 3s + 2) = s/((s+1)(s+2)). ⇒ G(s) = 1/s · s/((s+1)(s+2)) = 1/((s+1)(s+2)). Partiellbråksuppdelning ⇒ 1/(s+1) - 1/(s+2). Formelsamling Tab.5:11 ⇒ g(t) = (e^{-t} - e^{-2t}) u(t). Kommentar: g(t) = (u*h)(t), dvs. vid beräkning av stegsvaret betraktas alltid ett energifritt tillstånd ⇒ y_{zi}(t)=0.
b) Differentialekvations beskrivet kausalt LTI-system, dvs. h(t<0)=0, med x(t<0)=0 ⇒ y(t<0)=0. Använd den enkelsidiga Laplacetransformen:
L_I{ d^2y/dt^2 + 4 dy/dt + 4 y } = L_I{ d x/dt + x(t) }.
Formels. Tab.4:10 ⇒ (s^2 Y(s) - s y(0-) - y'(0-)) + 4(s Y(s) - y(0-)) + 4 Y(s) = (s·X(s) - X(0-)) + X(s).
Med initialvillkor (=0) ⇒ (s^2 + 4s + 4) Y(s) - (2s + 9) = (s+1) X(s).
⇒ Y(s) = (2s + 9)/(s^2 + 4s + 4) + X(s)·(s+1)/(s^2 + 4s + 4) = Y_{zi}(s) + Y_{2s}(s), där Y_{2s}(s) = X(s)·H(s).
Beräkna Y_{zi}(s) = (2s + 9)/(s+2)^2 = 2/(s+2) + 5/(s+2)^2 ⇒ med Tab.5:11 & 5:12 ⇒ y_{zi}(t) = 2 e^{-2t} u(t) + 5 t e^{-2t} u(t) = (2 + 5 t) e^{-2t} u(t).
Y_{2s}(s) = X(s)·(s+1)/(s+2)^2 = 1/s · (s+1)/(s+2)^2 = 1/(s+2)^2 ⇒ y_{2s}(t) = t e^{-2t} u(t).
Alltså y(t) = y_{zi}(t) + y_{2s}(t) = (2 + 5 t) e^{-2t} u(t) + t e^{-2t} u(t) = (2 + 6 t) e^{-2t} u(t).
Connections (5) est. points: 0
exam_6, assignment 1
6 p
Snippet: Differential equation d^2y/dt^2 + 2 dy/dt + y = dx/dt + x with x(t)=3 u(t) and initial values y(0-) and y'(0-). Solution computes H(s) via Laplace: (s^2+2s+1)Y_2s=(s+1)X ⇒ H(s)=(s+1)/(s+1)^2=1/(s+1), splits y=y_2s+y_ei, uses one-sided Laplace for zero‑input part and inverse transforms to get y(t). Connection: identical method — Laplace of differential equation, compute H(s), separate zero‑state/zero‑input, account for initial conditions, partial fractions and inverse Laplace to obtain y(t).
exam_5, assignment 1
5 p
Snippet: Differential equation d^2y/dt^2 + 5 dy/dt + 6 y = 5 dx/dt + 13 x. Tasks: (a) compute y(t) for x(t)=6 + √104 cos(2t); (b) compute step response g(t). Solution: Laplace-transform the DE, derive H(s)=(5s+13)/(s^2+5s+6), evaluate H(0) and H(j2) to find steady/phasor response, and compute G(s)=U(s)·H(s) with U(s)=1/s then inverse Laplace to get g(t). Connection: same techniques as lesson — Laplace of DE, obtain H(s), compute step response and steady‑state via transforms and inverse transforms.
exam_4, assignment 5
3 p
Snippet: Discrete-time signal‑flow with delays leads to H(z) = (1 - z^{-6})/(1 - z^{-1}) and request to compute step response g[n] via Z-transform or convolution; solution uses X(z)=1/z-1 etc., G(z)=U(z)H(z), partial fractions and inverse Z to get g[n]. Connection: conceptually the same workflow in discrete time — transform domain (Z instead of Laplace), multiply by U(s)/U(z), partial fraction/inversion to get step response; method and split into transform-domain algebra and inverse transform mirror the continuous‑time lesson.
exam_3, assignment 4
3 p
Snippet: Difference equation y[n] + 0.25 y[n-2] = 2 x[n] + x[n-1] with initial states y[-1]=0.5, y[-2]=-1. Tasks: (a) find H[z] and ROC; (b) compute zero-input response y_zi[n]. Solution forms (1+0.25 z^{-2})Y=(2+z^{-1})X, derives H(z) and then Y_zi(z) from initial conditions, inverts to time domain. Connection: same core idea as lesson's use of one‑sided transforms to include initial conditions and to obtain zero‑input (free) response — here in discrete Z domain, but method and reasoning (transform, isolate Y_zi, invert) are directly relevant.
exam_2, assignment 1
1 p
Snippet: Given non‑causal h1(t)=e^{a t} u_0(-t) and desired causal h2(t)=e^{a t} u(t), design cascade with H3(s); solution computes H3(s)=H2(s)/H1(s) and finds h3(t) via inverse Laplace (including use of transforms/tables). Connection: uses Laplace algebra and inverse transforms (tables) to get time-domain impulse responses — relates to computing H(s) and inverse Laplace steps in the lesson (weaker connection, no initial‑value/zero‑input split).